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As borders between different entities, lines are an important element of natural images.
Indeed, the neurons of the mammalian visual cortex are tuned to respond best to lines
of a given orientation. This preferred orientation varies continuously across most of
the cortex, but also has vortex-like singularities known as pinwheels. In attempting
to describe such patterns of orientation preference, we are led to consider underly-
ing rotation symmetries: Oriented segments in natural images tend to be collinear;
neurons are more likely to be connected if their preferred orientations are aligned to
their topographic separation. These are indications of a reduced symmetry requiring
joint rotations of both orientation preference and the underlying topography. This is
verified by direct statistical tests in both natural images and in cortical maps. Us-
ing the statistics of natural scenes we construct filters that are best suited to extract-
ing information from such images, and find qualitative similarities to mammalian
vision.

KEY WORDS: Visual cortex; Orientational preference map; Pinwheel structure; Joint
rotational symmetry; Transversality; Information optimization.
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1. INTRODUCTION

The pioneering studies of Hohenberg and Langer have helped us appreciate the
origin and ubiquity of patterns in non-equilibrium physical systems.(1,2) They have
shown that asking the right questions about the formation and characteristics of
patterns can lead to fundamental insights about underlying mechanisms. In this
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paper, we shall apply these lessons to an example from the realm of biological
systems, namely certain patterns observed in the mammalian visual cortex. We
find that general concepts of symmetry and universality can indeed be useful in
this context.

The first step in vision is the focusing of light by the lens of the eye to
the retina. The impinging light excites the photoreceptors and in turn activates
the different types of retinal neurons.(3) The signal from the roughly one million
ganglion cells (the output neurons of the retina) is then accumulated and trans-
mitted through the optic nerve. There is one synapse of processing in the area
of thalamus known as the lateral geniculate nucleus (LGN), before the informa-
tion is transmitted to the primary visual cortex (V1). V1 is the first area of the
cortex that processes visual information; in humans it has an area of roughly
13 cm2.

The electrical activity of individual neurons (typically a train of spikes) can
be probed using fine micro-electrodes. The receptive field of the neuron refers to
the stimuli that elicit the largest response. For example, ganglion cells at a specific
spot on the retina respond when a light impinges near that location (topographic
organization). However, their response is unlike a photographic film in that they
don’t fire spikes when there is uniform illumination. The typical receptive field of
retinal neurons has a so-called center-surround character, i.e. the maximum firing
rate is obtained when a central portion is illuminated while the surrounding area
is dark (or vice versa).

The topographic organization of the retina is preserved in both the thalamus
and in V1, and one can identify a (distorted) two dimensional map of the visual
field in these areas. However, the receptive fields are different: Neurons in the LGN
still have a center-surround response similar to their retinal counterparts, while
neurons in V1 respond best to bars of lights of a particular orientation. Hubel
and Wiesel(4) who originally discovered the orientation preference of V1 neurons,
suggested that this could arise if several neurons from LGN were connected to a
single neuron in V1. If the former are arranged along a line in the topographic
space, the V1 cell will receive its highest input when a bar of light is aligned with
the LGN neurons. Such a feed-forward model has since become a paradigm for
how information is processed in the brain, gradually becoming more specialized
at higher cortical areas.

While micro-electrodes provide information at the scale of a single neuron,
it is also possible to obtain information at the scale of the whole cortex using
optical imagining methods (dyes changing color due to metabolic byproducts of
firing neurons).(5) Intricate maps of global patterns of orientation preference (OP)
over the cortex have been obtained in this manner. In the mammalian cortex, the
preferred orientation of neurons varies continuously across most of the cortex, but
there are prominent pinwheel centers around which all orientations are present.
The two possible directions of circulation give two types of pinwheels which occur
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Fig. 1. Orientation preference maps for (a) monkey (provided by K. Obermeyer) and (b) cat (provided
by M. Sur and J. Schummers). The different orientations are labeled by colors (central bar). Pinwheel
singularities are present in both maps. (color online)

in equal numbers. Two such maps, from monkey and cat respectively, are depicted
in Fig. 1.

While the above context may be unfamiliar to the physics audience, the
types of patterns presented in this figure certainly have much in common with
those observed in magnets and liquid crystals. The discussion of the patterns
and symmetries in the remainder of this paper follows these familiar examples.
In Section 2 we focus on the dynamics of the topological defects (pinwheels or
vortices) in the two dimensional field of OP. We find that rotational symmetries
are essential to understanding the fate of topological defects: In systems where
the orientations can be rotated independently of the underlying topography the
pinwheels tend to annihilate, but they survive when the two rotations must occur
together. This is supported by calculating the density of defects in the linear
regime (from a superposition of Gaussian modes), and numerical simulations of
non-linear models.(6)

Section 3 presents the results of statistical analysis of images of an orientation
field. In the first part we analyze OP maps of monkey and cat, and find evidence
of the coupling of rotations to the underlying topography. Of course, the necessity
of joint-rotations is evident from casual consideration of natural images. In Sec-
tion 3.2 we quantify this by examining Fourier transforms of lines from a database
of natural images. In particular, we emphasize that the transverse component of the
power spectrum is larger than the longitudinal one. In the final section, we inquire
about the implications of the observed statistics for efficient processing of visual
data. Specifically, we construct filters that maximize the information content of
the processed visual signal. We find that such optimal filters (a) can account for
qualitative features of horizontal connections in V1; and (b) are good for filling in
missing gaps in images of lines.
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2. PINWHEELS IN EVOLVING ORIENTATION FIELDS

2.1. Evolving Fields

Analytical understanding of the development of visual maps, and its connec-
tions to other problems in pattern formation, is best obtained in terms of evolving
fields. In this framework, OP is modelled by a director field s ≡ (sx (x, y), sy(x, y)),
indicating the preferred orientation at location r ≡ (x, y) on the cortex. The field
s (r, t) then evolves in time according to some development rule that depends on
its configurations at earlier times.(7,8) Wolf and Geisel (WG) have shown(9) that a
large number of such evolutions can be summarized through a dynamical equation
∂t s (r, t) = F [s]. (WG combine the two components into a single complex field
z = (sx + isy)2.) Common elements in models of evolving fields are:

(a) Starting from an initial condition with little OP, there is a rapid onset of
selectivity governed by L [s], the linear part of the functional F [s]. The
characteristic length scale observed in cortical maps is implemented by a
linear operator that causes maximal growth of features of wavelength �,
i.e. acting as a ‘band-pass filter’ in the parlance of circuits. It is possible
to follow the linear development analytically: WG show that the density
of pinwheels (zeros of the field z(r)) has to be larger than π/�2 in this
regime.

(b) Since the linear evolution leads to unbounded growth of OP, nonlinearities
are essential for a proper saturation of the field. While analytical studies
of nonlinear development are difficult, numerical simulations indicate that
the OP patterns continue to change (albeit more slowly) even after their
magnitudes have saturated. More importantly, the pinwheels typically an-
nihilate in pairs, giving way to a rainbow pattern of wavelength �. To
maintain pinwheels, development has to be stopped, or extrinsic elements
such as inhomogeneities that trap the pinwheels have to be introduced.(10)

Since the neural processes that lead to OP are still not fully understood,
the stability of pinwheels has not been a topic of much study among
neuroscientists. Nevertheless, the search for intrinsically stable pinwheel
patterns has motivated some recent studies.(11,12) We propose here an alter-
native explanation, demonstrating that evolving field models with proper
rotational symmetry generically lead to patterns with stable pinwheels.

2.2. Symmetries and Linear Dynamics

Symmetry considerations are paramount in problems of pattern formation.
Since all directions are more or less equally present in cortical maps, practically
all models of OP (certainly those summarized in WG) assume that different
orientations are equivalent.(13) This is implemented by requiring the evolution
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Fig. 2. (a) The image of an arrow formed by oriented solid lines, on a topographic grid of dotted lines.
(b) Each solid line is rotated anti-clockwise by 45◦ independent of the grid. The thus ‘rotated’ image
bears little resemblance to the original. (c) Simultaneous rotation of the grid and the solid lines, as the
whole image is rotated. (color online)

of s (r, t) to be unchanged if all angles are rotated together. This rotation is
independent of the topographic space r, which is also assumed to be isotropic
(no preferred directions). Two versions of rotation are illustrated in Fig. 2. Fig-
ure 2(b) displays a collection of oriented lines that are rotated independently of
the background grid from Fig. 2(a). We propose that the appropriate symmetry for
OP maps is simultaneous rotations of the orientations and the underlying space,
as illustrated in Fig. 2(c).

We believe that the restriction to joint rotation symmetry is an essential aspect
of the OP maps, and should be incorporated into models and analytical studies. To
underscore the difference between the two symmetries, let us consider the linear
evolution of the Fourier modes s̃α (q, t) = ∫

d2xeiq·xsα (x, t), where α = 1, 2 (or
x, y) labels the two components of the vector s̃. Rotation symmetries constrain the
linear evolution to the form

∂t s̃α(q, t) =
∑

β=1,2

[J (q)δαβ + qαqβ K (q)]s̃β(q, t). (1)

Due to the assumed isotropy, the functions J and K only depend on the magnitude
of the vector q. (For example, they can be band-pass filters peaked at q = 2π/�,
to reproduce the power spectrum of cortical maps.) If rotations of s and r are
independent, the only possible isotropic tensor is δαβ , and the second term must
be absent (K (q) = 0). However, if s and r can only be rotated together, qαqβ is
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another possible rank two tensor. (Another way to see this is that q · s̃ is invariant
under joint rotations, but not separate rotations of s̃ and r.)

A finite K (q) mixes the evolution of the two components s̃1 and s̃2. This
mixing can be removed by decomposing the field s̃ into longitudinal and transverse
components. For a given q, the longitudinal component is parallel to q, and the
transverse component is perpendicular to it. Under the action of the linear operator
in Eq. (1), the two components grow as e[J (q)+q2 K (q)]t and eJ (q)t . If K (q) = 0 (full
rotation symmetry) the two modes grow at the same rate. In particular, an equal
superposition to the two modes is compatible with a rainbow pattern which does not
contain any nodes. (The rainbow is unique among the many possible superposition
patterns in that it contains no pinwheels. It is precisely this feature that makes it a
likely candidate to survive in the non-linear regime.) However, K (q) is generically
non-zero for a joint rotation symmetry, and one of the two modes eventually
dominates the other. The dominance of transverse or longitudinal components
increases the density of zeros. Unlike the rainbow pattern for K (q) = 0, it is not
possible to find any superposition of modes in this case which has a uniform
amplitude in space.

2.3. Simulations of Non-Linear Dynamics

The arguments from the linear regime strongly suggest that joint rotational
symmetry promotes pinwheel stability. To bolster this hypothesis, we carried out
simulations of the nonlinear evolution where variables {si (t)} were placed on lattice
points ri , and evolved in time according to

∂t si = si (1 − |si |2) +
∑

j

[J (ri j ) s j + K (ri j ) (s j · r̂i j )r̂i j ], (2)

where ri j = ri − r j has magnitude ri j along the unit vector r̂i j . The above equation
and similar evolution models are very much in the spirit of the Swift–Hohenberg
equation,(1,14) where symmetry plays a key role in modeling pattern formation.
The nonlinearity appearing in the first term on the right hand side stabilizes
the magnitude of si to unity. The linear evolution is governed by a vectorial
center-surround filter, composed of two parts: (a) A standard center-surround
filter with positive couplings Js in a circle of size R/2 ∼ � and negative values Jl

in an annulus from R/2 to R. (b) Additional couplings in the annular region that
explicitly depend on orientations relative to the lines joining lattice points, and
invariant only under joint rotations. We employ only positive long-range couplings
K , to mimic the preferential ‘horizontal’ connectivity of co-oriented co-axially
aligned receptive fields, as reported in Ref. 16. (Similar kinds of anisotropic
interactions were also employed in a model for dynamics of neural activity in the
visual cortex.(17))
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Fig. 3. (a) The development of a random initial condition by a typical center-surround (bandpass)
filter leads to a collection of pinwheels. The filter used in (b) has full rotation symmetry (K (r ) = 0 in
Eq. (2)). In this case the pinwheels annihilate in pairs, giving way to a rainbow pattern at long times.
(c) By contrast, a model with joint rotation symmetry evolves to a stable pattern of pinwheels. This
figure was generated by the vectorial center-surround filter in Eq. (2), with a non-zero K (r ).

Simulations are started on an L × L lattice with initial values of |si | = 10−3,
equally distributed over all angles, with Js = 0.01, Jl = −0.0034, and R = 10.
As shown in Fig. 3(a), undifferentiated initial conditions quickly develop into a
pattern with pinwheels reminiscent of actual maps. Further evolution depends on
the symmetry of development rules. Full rotation symmetry with K = 0, and the
action of (b) above turned off, leads in a rainbow state with no pinwheels at long
times, as in Fig. 3(b). However, reduction of this symmetry by adding interactions
in (b) with K = 0.0034, above eventually results in a square lattice of pinwheels,
as in Fig. 3(c). Naturally, we do not imply that pinwheels in cortical maps form
a square lattice (various inhomogeneities could easily trap these vortices in a dis-
torted arrangement), but that they are intrinsically stable under such development
rules.

The precise choice of long-range coupling is not important for the stability
of pinwheels. We tested a variety of long-range interactions in our numerical
simulations, and found that pinwheels are generally present in the presence of
anisotropy. As an example, we observe a pinwheel pattern with a negative value
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Fig. 4. (a and c) Stable pattern of pinwheels with joint rotation symmetry, with a negative value
of K = −0.0039. (Compare with Fig. 3c of the manuscript.) (b and d) A pinwheel pattern is also
generated in simulations with the model in Eq. (3), which is explicitly invariant under changing the
signs of si or s j . (color online)

of K which is used to generate the map in Fig. 4(a). Another potential concern
is that in our simulations the orientations are represented by a vector, while in
actuality they should be modelled by a director field (vectors without arrows). To
address this issue, we also consider the following evolution equation

∂t si = si (1 − |si |2) +
∑

j

[
J (ri j )(si · s j )s j + K (ri j )(s j · r̂i j )

2(si · r̂i j )r̂i j

]
. (3)

which is explicitly invariant under rotation of orientations by π . Figure 4(b)
displays the result of a corresponding simulation (for interaction strength K =
0.0034). The pattern of stable pinwheels is similar to Fig. 3(c), indicating that this
is not an artifact of the vectorial model.(18)
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2.4. Density of Pinwheels

It is in fact possible to analytically calculate the density of vortices in the linear
regime. The key observation is that in this regime the probability distribution for
�S ≡ (Sx (x, y), Sy(x, y)) is Gaussian. The most general Gaussian weight subject
to joint rotational invariance of �S and �r , is

p
[
�S
]

∝ exp

{

−1

2

∫
d2q

(2π )2
Sα(�q )Sβ (−�q )

[

λ−1(q)
qαqβ

q2
+ τ−1(q)

(

δαβ − qαqβ

q2

)]}

,

(4)

where �S(�q ) is the Fourier transform of �S(�r ), λ(q) and τ (q) are longitudinal and
transverse contents of the power spectrum, and τ (q) = λ(q) in an isotropic system.
The average density of zeros is obtained from(20)

n = 〈δ2(�S ) det ∂α Sβ〉 = 〈δ2(�S(0))〉〈|∂x Sx (0)∂y Sy(0) − ∂x Sy(0)∂y Sx (0)|〉. (5)

Here the average can be taken at �r = 0 because of translation symmetry. Also,
the averages ∂α

�S are independent since the probability distribution function is
invariant under �S → �S + �C . The first average is easily calculated as

〈δ2(�S(0))〉 =
∫

d2k

(2π )2

〈
ei �k· �S(0)

〉 =
∫

d2k

(2π )2
exp[−k2

2
〈�S(0) · �S(0)〉]. (6)

The variance of �S(0) is

〈�S(0) · �S(0)〉 =
∫

d2qd2q ′

(2π )4
〈Sα(�q )Sα(�q ′)〉

=
∫

d2qd2q ′

(2π )4
(2π )2δ2(�q + �q ′) [λ(q) + τ (q)] , (7)

and by inserting Eq. (7) to Eq. (6), we get

〈δ2(�S)〉 = 1

2π

1
∫ d2q

(2π)2 [λ(q) + τ (q)]
= 1

∫
dq q [λ(q) + τ (q)]

. (8)

As a first step to calculating the average determinant, we consider

〈∂i Sα(0)∂ j Sβ(0)〉 =
∫

d2q

(2π )2

d2q ′

(2π )2
(iqi )(iq

′
j )

〈
Sα(�q )Sβ(�q ′)

〉

=
∫

d2q

(2π )2
qi q j

[

λ(q)
qαqβ

q2
+ τ (q)

(

δαβ − qαqβ

q2

)]

=
∫

d2q

(2π )2
q2

[

τ (q)

(
δi jδαβ

2
− δi jδαβ + δiαδ jβ + δiβδ jα

8

)
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+ λ(q)
δi jδαβ + δiαδ jβ + δiβδ jα

8

]

= δi jδαβ

4π

∫
dqq3τ (q) + δi jδαβ + δiαδ jβ + δiβδ jα

16π

×
∫

dqq3 (λ(q) − τ (q)) . (9)

We next rewrite Eq. (9) as
〈
∂i Sα∂ j Sβ

〉 = δi jδαβ κ + (δi jδαβ + δiαδ jβ + δiβδ jα) µ, (10)

where κ = ∫
dq q3 τ (q)/(4π ), and µ = ∫

dq q3 (λ(q) − τ (q))/(16π ) is zero in
an isotropic system. In the isotropic system, each of the four derivatives is an
independent variable. However, for µ �= 0, there are two correlated pairs
(∂x Sx , ∂y Sy), and (∂x Sy, ∂y Sx ). For the first pair, we have 〈(∂x Sx )2〉 = 〈(∂y Sy)2〉 =
κ + 3µ, while for the second pair 〈(∂y Sx )2〉 = 〈(∂x Sy)2〉 = κ + µ. The cross cor-
relations in each pair are identical, 〈∂x Sx∂y Sy〉 = 〈∂x Sy∂y Sx 〉 = µ, such that the
average value of the determinant is zero.

As a second step towards the calculation of average absolute value of the
determinant, we find its probability distribution as

p(d) = 〈
δ
[
d − (

∂x Sx∂y Sy − ∂x Sy∂y Sx

)]〉 =
∫

dω

2π
eiωd

〈
eiω(∂x Sx ∂y Sy−∂x Sy∂y Sx )

〉
.

(11)

As established above, the two factors in the final exponent are independent random
elements. The random variables ∂α Sβ ≡ uαβ are Gaussian distributed, with co-
variances given by Eq. (10). By inverting the co-variance matrix, we can construct
the probability distribution for {uαβ}, and then calculate the average

〈
eiωuxx uyy

〉 =
∫

duxx duyy

N

× exp

{

−1

2
(uxx , uyy)

[
κ+µ

(κ+µ)2−µ2 − µ

(κ+µ)2−µ2 − iω

− µ

(κ+µ)2−µ2 − iω µ

(κ+µ)2−µ2

](
uxx

uyy

)}

=
[

(κ + µ)2

((κ + µ)2 − µ2)2
− µ2

((κ + µ)2 − µ2)2
− 2iωµ

(κ + µ)2 − µ2
+ ω2

]− 1
2

×
[

(κ + µ)2 − µ2

((κ + µ)2 − µ2)2

] 1
2

= [
1 + ω2((κ + µ)2 − µ2) − 2iωµ

]− 1
2 . (12)
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(The normalization N in the denominator is simply the numerator evaluated at
ω = 0.) Similarly, the second average is

〈
e−iωuxy uyx

〉 = [
1 + ω2((κ + 3µ)2 − µ2) + 2iωµ

]− 1
2 . (13)

Inserting Eqs. (12) and (13) into Eq. (11) gives the implicit result

p(d) =
∫ ∞

−∞

dω

2π

eiωd

[1 − 2iωµ+ω2(κ2 + 2µκ)]
1
2 [1 + 2iωµ+ ω2(κ2 + 6µκ + 8µ2)]

1
2

.

(14)

Let us consider the isotropic case, µ = 0. The probability distribution func-
tion is

p(d) =
∫ ∞

−∞

dω

2π

eiωd

1 + κ2ω2
= 1

2κ
e−|d|/κ , (15)

from which we obtain

〈|d|〉 = 2
∫ ∞

0
dx

1

2κ
e−x/κ = κ. (16)

From Eqs. (5), (8), and (16), average density of pinwheels is then

n = 1

4π

∫
dqq3τ (q)

∫
dqq(λ(q) + τ (q))

= 1

8π

∫
dqq3 P(q)

∫
dqq P(q)

, (17)

where P(q) = λ(q) + τ (q) = 2τ (q) is the power spectrum of the field. The above
result is smaller by a factor of two than that obtained in Ref. 9. However, our
calculation was with a vector field, whereas the orientation preference is a director
field which is the same if the vector is inverted. To incorporate this feature, Ref. 9
works with a complex field |z(�x)|e2iθ(�x) ≡ (Sx + i Sy)2, a procedure that doubles
the zeros calculated above for the field (Sx + i Sy). This factor is not important to
us, since we are interested in how the result is modified by anisotropy.

Performing the integral in Eq. (14) for µ �= 0 is not an easy task. We note that
since 〈d〉 = 0, the average of the absolute value provides a measure of the width of
the probability distribution p(d). A similar measure of the width of the distribution
that is much easier to calculate is the standard deviation

√
〈d2〉. Using standard

properties of Gaussian distributed variables, the variance of d is calculated as

〈d2〉 = 〈(∂x Sx∂y Sy − ∂x Sy∂y Sx )2〉
= 〈(∂x Sx )2〉〈(∂y Sy)2〉 + 2〈∂x Sx∂y Sy〉2 + 〈(∂x Sy)2〉〈(∂y Sx )2〉

+ 2〈∂x Sy∂y Sx 〉2 − 2〈∂x Sx∂y Sy〉〈∂x Sy∂y Sx 〉
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= (κ + 3µ)2 + 2µ2 + (κ + µ)2 + 2µ2 − 2µ2

= 2κ2 + 8µκ + 12µ2. (18)

As measures of the width of the distribution, 〈|d|〉 and
√〈

d2
〉
should vary together.

For our estimate, we shall assume that they are proportional, and choose the a
proportionality constant that makes the two expression equal for µ = 0; i.e. we
make the replacement

〈|d|〉 →
√〈

d2
〉

2
=

√
κ2 + 4µκ + 6µ2, (19)

resulting in the density of zeros

n ≈
√

κ2 + 4µκ + 6µ2
∫

dq q (λ(q) + τ (q))
. (20)

Using the expressions for κ and µ, we note that

κ + 2µ = 1

4π

∫
dq q3

(

τ (q) + λ(q) − τ (q)

2

)

= 1

8π

∫
dqq3 P(q), (21)

where P(q) ≡ λ(q) + τ (q) is the total power content at q. With the aid of Eq. (21),
Eq. (20) now becomes

n ≈
√

(κ + 2µ)2 + (2µ)2
∫

dq q P(q)
= 1

8π

∫
dq q3 P(q)

∫
dq q P(q)

√

1 +
[∫

dq q3 (λ(q) − τ (q))
∫

dq q3 (λ(q) + τ (q))

]2

.

(22)

For a fixed P(q), the density of zeros is minimum in the isotropic limit of τ (q) =
λ(q). In the extreme anisotropic limit of τ (q) = 0 or λ(q) = 0, the density of
zeros increases by a factor of

√
2. In view of the approximations involved, we also

performed numerical simulations to check if the density of pinwheels is higher in
the anisotropic case. We found that this is indeed the case although the relative
increase in density of 1.12 is less than the value of

√
2.

Let us illustrate the time evolution of the density of zeros, using a simple
linear model for development of the field, in which the longitudinal and transverse
components of the power spectrum grow as

λ(q, t) = λ0(q) erl (q) t ,

τ (q, t) = τ0(q) ert (q) t , (23)

where growth rates are rl(q) = 2[J (q) + q2 K (q)] and rt (q) = 2J (q). If initially
λ0(q) = τ0(q) = P0/2, for q < qmax, i.e., an isotropically random initial condition,



Patterns and Symmetries in the Visual Cortex and in Natural Images 1259

Fig. 5. Schematic depiction of the evolution of the density of zeros for isotropic (red line) and
anisotropic (blue line) interactions. Anisotropy results in an increase of the density of pinwheels in the
latter stages of linear regime. The non-linear extrapolation is based on simulation results. (color online)

the density of zeros starts as

n(t = 0) ≈ 1

16π
q2

max. (24)

As time goes on, modes with the largest growth rate dominate, reducing n through
pair annihilations. Assuming small anisotropy, such that rl (q) ≈ rt (q) = 2J (q)
with a maximum at q̄ = 2π/�, we have

n
(
t ≥ (2J (q̄))−1

) ≈ 1

8π
q̄2 = π

2�2
. (25)

However, because of small anisotropy (rl(q) �= rt (q)), one of these nearly degen-
erate modes will dominate the other, such that for longer times,

n
(

t ≥ (2q̄2 K (q̄))
−1

)
≈ 1

8π
q̄2

√
2 = π

2�2

√
2. (26)

Figure 5 shows schematic evolution of n for isotropic and anisotropic cases, the
increase of the density in the latter must also involve creation of pairs of vortices.

3. STATISTICS OF LINES IN IMAGES

3.1. Analysis of Cortical Maps

In the previous section we were appealing to the stablity of pinwheels to
argue that the dynamics of OP must follow a joint rotational symmetry. However,
it is indeed possible that the pinwheels are present due to arrested dynamics of a
fully symmetric field. (The dynamics may have been stopped due to development,
or slowed down by inhomogeneities.) Is it possible to distinguish between these
alternatives by direct analysis of cortical patterns such as those reproduced in
Fig. 1. This is indeed what we shall argue in this section.
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Fig. 6. Histograms of OP from a cortical map of monkey. (a) The relative orientation 2
(
θi − θ j

)
,

between two pixels i and j at a distance R, is one argument of the histogram; the second is the OP of
one point measured relative to the line joining the two pixels (at angle φi j ). Full histograms are shown
on the left column, while the right column is for 2

(
φi j − θ j

) = 00 (solid line) or 90o (dotted line).
(b and c) are for short separations of 5 to 10 pixel spacings, and show no dependence on the relative
angle. By contrast, there is a small but clear indication of a coupling to the underlying topography in
(d) and (e) which are taken at distances of 70 to 75 pixels, comparable to the separations of pinwheels.
Such dependence indicates the lack of full rotation symmetry in the map. (color online)

To directly test the hypothesis of reduced rotation symmetry, we made joint
histograms of the form h R

[
2
(
θi − θ j

)
, 2

(
φi j − θ j

)]
, where θi and θ j are OPs at

two locations i and j separated by a distance R, as indicated in Fig. 6(a). (The
factor of two is introduced since the relative orientation is defined i from 0 to
π .) The second argument measures the angle relative to the line joining points i
and j . If the orientations are independent of topography, the histograms will be
independent of their second argument.
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Histograms from the map of monkey in Fig. 1(a) (in the form of 360 × 480
pixels, provided by K. Obermeyer) are shown on the left column in Fig. 6; the right
column shows cross-sections at 2

(
φi j − θ j

) = 0◦ and 90◦ which display maximal
contrast. Figure 6(b) and (c) are at separations R which are a fraction of the
typical distance between pinwheels, and show no indication of any dependence on
topography. By contrast, Fig. 6(d) and (e) correspond to values of R comparable
to pinwheel separations. There is now a small, but distinct dependence on the
orientation of the line between two points; indicating that the OPs do not follow a
distribution with full rotational symmetry.

Similar results were obtained for the map from cat in Fig. 1(b) (204 × 372
pixels, provided by M. Sur and J. Schummers). In neither case is the dependence
on the second argument large (at most around %20), and some assessments of its
statistical significance is needed. Since we had access to only one map in each
case we made an indirect estimate of statistical error by constructing an artificial
ensemble of 2000 histograms through random samplings of 2.9% of total pixels
in the monkey map. From the thus included errors bars in Fig. 6(e), we conclude
that the differences fall outside statistical errors.

3.2. Transversality of Natural Images

An image on a screen is represented by a set of intensities at each pixel.
The photoreceptors of the retina also respond to the intensity of light arriving
from specific directions. However, when it comes to interpreting the content of an
image, primary clues are the borderlines between different regions. As discussed
earlier, already at the level of the mammalian primary visual cortex (V1), neurons
respond best not to points of light, but to lines of particular orientation.(4) It is
thus important to inquire about the statistics of lines in natural scenes, and the
implications for vision. In Ref. 21, such a study is performed by first converting
images to a set of lines: Correlations of a pair of such lines with their relative
location in space, indicates a tendency towards co-circularity, namely the most
likely arrangement of the two segments is to lie along a circular arc joining them.
We start with a similar decomposition of images to lines, examine their statistics
(e.g. by Fourier transformation), and explore their implications for visual detection.

There are previous studies of the power spectrum of the (scalar) intensity cor-
relations of natural images.(22,23) For a vectorial quantity, a natural decomposition
is into longitudinal/transverse Fourier components, which measure the variations
parallel/perpendicular to a wavevector �k. Such decomposition is for example quite
common in studies of turbulent velocity fields.(24,25) We construct similar mea-
sures of variations of the lines in natural images (which unlike a vector field do not
point to a specific direction), and find enhanced power in the orthogonal (trans-
verse) channel. We designate this feature, related to the prevalence of sharp lines,
the ‘transversality’ of natural images.
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Fig. 7. Intensity plots of the longitudinal S(�k) (a), and transverse Stt (�k) (b), power spectra obtained
from averaging over a set of 100 natural images. (c) Log–log plots of S(k) and Stt (k) after averaging
over all angles.

Our starting point is a collection of black and white pictures from a database,
“http://hlab.phys.rug.nl/imlib/index.html”,(26) which includes trees, buildings,
flowers, leaves, and grass. The data, which is in the form of a scalar intensity
at each pixel, is then converted into oriented segments [sx ( �X ), sy( �X )] at each
pixel �X , using filters based on the second derivative of a Gaussian and its Hilbert
transform.(27) Since [sx , sy] and [−sx ,−sy] describe the same orientation, we in-
troduce the tensor field sαβ( �X ) = sα( �X )sβ( �X ), which is invariant under reflection.
The two dimensional Fourier transforms of the components of this tensor lead to
a corresponding Sαβ (�k). The longitudinal and transverse components of the tensor
are then obtained as

S(�k) = tr [L(�k)S(�k)], St (�k) = tr [T(�k)S(�k)], (27)

with the aid of the projection operators

Lαβ (�k) = k̂α k̂β, Tαβ(�k) = [δαβ − k̂α k̂β], (28)

where k̂ is the unit vector in the direction of �k.
Figure 7(a) and (b) show the power spectra S(�k) ≡ |S(�k)|2 and Stt (�k) ≡

|St (�k)|2 after averaging over 100 images. Clearly these quantities are not isotropic
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and vary with angle. This is due to the predominance of vertical and horizontal
segments in the images. The bias of oriented segments along cardinal directions in
natural scenes is well known,(28) and a similar bias exists in the OPs of cortical maps
from adult ferret and cat.(29,30) There is a corresponding larger area of V1 devoted
to vertical and horizontal orientations, and a greater stability of cardinal neurons
to changes of orientation.(31) Since we are not interested in the predominance
of specific orientations, we remove this anisotropy by averaging over rotated
images.(32) Equivalently, we can average the power spectra in Fig. 7 over all
angles, resulting in S and Stt as a function of |�k|, as depicted in Fig. 7(c).

The data in Fig. 7 clearly shows higher power in the transverse component.
The longitudinal power spectrum is reasonably close to a power-law form k−2,
indicated by the dotted line in this logarithmic plot. Such a power-law was fitted
previously to the power-spectrum obtained from the intensity of natural images,
and presumably reflects an underlying scale invariance since objects can appear
at any distance from the viewer. The transverse power spectrum coincides with
the longitudinal one at large values of k; this is expected, reflecting the (imposed)
isotropy of line segments at short distances. It is not clear to us, why the two
spectra also approach each other at small k (longest wave-lengths); this may be an
artifact of the way the images are framed in the pictures.

The enhanced transverse power is a consequence of the abundance of sharp
and extended edges in natural images. An elementary illustration is obtained by
comparing a long straight line with a horizontal arrangement of short vertical
segments as in a fence. The former has no longitudinal Fourier component while
the latter has weak transverse character. To see whether there are other sets of
images with different character, we did a sampling of paintings from modern art.
We find that many paintings from the impressionist school with blurred lines have
approximately equal transverse and longitudinal powers, as shown in Fig. 8(a) and
(c). By contrast, cubist paintings with sharp lines share (and in fact exceed) the
transversality of natural images, as depicted in Fig. 8(b) and (d).(33)

4. IMPLICATIONS FOR VISUAL DETECTION

4.1. Horizontal Connections

Since the task of the visual cortex is to decipher visual signals, its design
should incorporate characteristics and correlations from natural images. Within
V1 there are horizontal connections (extending for 2–5 mm) which mostly link
columns of neurons with similar OPs.(34,35) Staining experiments with injected
biochemical tracers in the tree shrew reveal that these lateral connections are
longer and stronger along an axis in the map of visual field that corresponds
to the preferred orientation of the injection site.(16) Similarly, in the cat visual
cortex, facilitatory effects occur only between neurons which are co-axial in the
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Fig. 8. Monet’s Water-lilies (a) and Picasso’s The cream (b). The corresponding log–log plots of
longitudinal S(�k) and transverse Stt (�k) power spectra appear respectively in (b) and (d). (color online)

spatial domain and co-oriented in the orientation domain.(36) Neural connections
of inhibitory cells in V1 also display anisotropic features in OP.(37) Although
less understood than the feed-forward connections from LGN, the long range
connections in V1 are presumed to mediate the global integration of an image
from its local elements. Evidence supporting this comes from fMRI investigations
in monkeys and humans: The neurons in V1 show higher response when viewing
a long extended line, compared to randomly oriented segments of the line.(38)

We next attempt to relate the statistics of natural images calculated in the
previous section to the lateral connections observed between neurons of V1,
using information theoretic methods. Indeed, information theory has been used to
describe early visual processing, such as the contrast response of large monopolar
cells,(39) the ‘center surrounded’ receptive fields in the retina,(40,41) and the white
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spatial and temporal power spectrum of signals from the LGN.(41,42) In Ref. 43,
linear filters for processing intensity signal inputs to V1 were calculated through
maximizing information subject to certain cost functions. Our approach is based
on the latter, and as extended in Ref. 44, but employing an input signal which is a
vector field.

The response of simple cells in V1 is primarily to an oriented line in a pre-
ferred direction, which we shall approximate by tr[t(�x)s( �X )] = [�t(�x) · �s( �X )]2. Here
sαβ( �X ) = sα( �X )sβ( �X ) is constructed from the orientation of the image segment
(input signal) at position �X in the visual field, while a tensor tαβ(�x) ≡ tα(�x)tβ(�x)
is defined in terms of the OP of a neuron at location �x in V1. The topographic map
between the visual field and V1 provides a mapping between �x and �X . However, to
emphasize that this mapping is not one to one, with many V1 neurons responding
to signals at the same position in the visual field, we use two symbols �X and �x .(45)

Our main interest is in the lateral connections to a cell from other neurons in V1.
With this aim, we indicate the net response (neuron firing rate), by

O(�x) = tr[t(�x)s( �X )] +
∫

d2 yF(�x, �y)tr[t(�y)s( �Y )] + η(�x). (29)

The ‘filter function’ F(�x, �y) denotes the strength of the horizontal connection
between the neurons at �x and �y; η(�x) is the noise experienced by the neuron which
is assumed to be uncorrelated at different points, with 〈η(�x)η( �x ′)〉 = σ 2δ2(�x − �x ′).

Given the stochastic nature of the input signal (as well as the noise), the
output O(�x) is a random variable with a (joint) probability distribution p[O(�x)].
The associated Shannon information(46) is

I = −〈ln p[O(�x)]〉 ≈ 1

2
ln det[〈O(�x)O( �x ′)〉c], (30)

where 〈O(�x)O( �x ′)〉c is the second cumulant (co-variance) of the output. We can
show that subject to reasonable approximations and constraints, the filter function
that maximizes the information I , has the form

F(�x, �y) = tαβ(�x)Sαβγ δ( �X − �Y )tγ δ(�y)

C2(�x − �y)
. (31)

In the above equation, the tensor tαβ(�x) ≡ tα(�x)tβ(�x) encodes the OP of the neuron
at �x . The optimal connection strength thus depends on the OP at both end points,
and is also proportional to the two point correlation function of the ensemble of
input signals Sαβγ δ( �X − �Y ) = 〈sαβ( �X )sγ δ( �Y )〉c/σ

2 at the corresponding locations
and orientations. (C2(�x − �y) is the cost of wiring neurons over a distance |�x − �y|.)

The above form qualitatively agrees with the observations in tree shrew(16)

and cat.(36) To confirm that Eq. (31) does indeed predict the enhanced horizontal
connections between collinear and co-oriented neurons, we measured the two
point correlation functions, Sαβγ δ( �X − �Y ), by averaging over a set of five images
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Fig. 9. The strength of horizontal connections among neurons with parallel OPs (solid line F||), and
with orthogonal OPs (dotted line F⊥), as a function of their angle ϕ to the line between their locations
in the visual field. The results are for a fixed separation, and obtained from the statistics of lines,
Sαβγ δ( �X − �Y ), in a set of five images of trees.

of trees. Figure 9 compares the strength of the connection among neurons with
parallel OPs (F‖) to that of neurons with orthogonal OPs (F⊥), as a function of the
angle ϕ between one of the OPs, and the line joining their locations in the visual
field. The figure is for a constant separation |�x − �y|, the angular dependence is not
very sensitive to this separation. There is a strong maximum in F‖ at collinearity
ϕ = 0; while F⊥ (which is always smaller than F‖) shows weak maxima at π/4
and 3π/4 (consistent with the co-circularity principle(21)).

4.2. Transverse Filters

One advantage of the above optimal filters is that it enables making up for
missing information using the expected statistics of the images. If the primary
signal sα( �X ) is somehow corrupted, the connections provide a guess based on
global statistics. Let us employ similar principles to construct artificial algorithms
for visual detection, which (like the human brain) are adept at deducing global
shapes in an image composed of edges. We define a vectorial output whose
components are

Oα(�x) =
∫

d2 yFαβ (�x − �y)sβ(�y) + ηα(�x). (32)

Fαβ(�k) = Lαβ(�k)F(�k) + Tαβ(�k)Ft (�k). (33)
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The filter is now a 2 × 2 matrix. As in Eq. (27) its Fourier transform can be
projected into longitudinal/transverse parts as

Fαβ(�k) = Lαβ(�k)F(�k) + Tαβ(�k)Ft (�k). (34)

We maximize the information I subject to an appropriate cost function C ,
including a constraint on the total gain of the filter and a penalty proportional to
the mean square spatial extent of the receptive field,(43,44)

W = I − C

= A

2

∫
d2k

(2π )2

[
S(�k)|F(�k)|2 + Stt (�k)|Ft (�k)|2

− λ
(
|F(�k)|2 + |Ft (�k)|2

)

− µ
(
| �∇k F(�k)|2 + | �∇k Ft (�k)|2

)]
. (35)

From Eq. (35), the larger amplitude of Stt (�k) compared to S(�k) leads us F(�k) = 0.
The transverse filter Ft (�k), is the bound solution of the variational equation,

[
Stt (�k) + µ∇2

k

]
Ft (�k) = λFt (�k), (36)

Fig. 10. Optimized filter functions, Fxx (a), Fyy (b), and Fxy (c). Absolute values of Fxx , Fyy , and Fxy

are calibrated linearly with the setting of Fxx (0) equals 255, the maximum intensity. The anisotropic
feature of these filter functions enable efficient sampling of orientation signals statistically correlated
with the topographic space.
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b

ca

Fig. 11. (a) A test image of a directed line with a gap (plus noise). Reconstructions of the missing
segment, with an isotropic filter (b); and with a transverse filter (c).

where we have Stt (�k) ≈ A|k|−2 in the intermediate range of k. After the back
transform to real space, we have

r2(1 + r2)
∂2 Ft (r )

∂r2
+ r (1 + 5r2)

∂ Ft (r )

∂r
+

[

r2

(

4 + B + ∂2

∂φ2

)

+ ∂2

∂φ2

]

Ft (r ) = 0,

(37)
where φ is the angular variable, B = A/µ, and r = √

µ/λ|�x |. If we neglect the
angular dependence of Ft (r ), Ft (r ) behaves as exp[−(1 + B/4)r2] near the origin
and the Fourier transform of Ft (r ) is given as

Ft (k) =
√

2π

C
e− k2

4C , (38)

where C = 1 + B/4. Within this approximation, the filter function Fαβ(�r ) is

Fαβ(�r ) = rαrβ

r2
F1(r ) +

(
δαβ − rαrβ

r2

)
F2(r ), (39)

where F1(r ) = (1 − e−Cr2
)/(

√
2πCr2) and F2(r ) = √

2C/π e−Cr2 − F1(r ).
Figure 10 depicts intensity plots of Fxx (�r ), Fyy(�r), and Fxy(�r).

We have compared the performance of the transverse filter with that of
the isotropic filter, Fiso(r ) = √

C/πe−cr2
from Ft (�k) = F(�k). The input image,

illustrated in Fig. 11(a) consists of vectors, some pointing randomly (noise), and
some arranged into a line with a gap (corrupted image). Figure 11(b–c) indicate
how well the filters reconstruct the missing part. The output of the transverse filter
is both stronger and better oriented to the erased line.
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